ReAssert: A Tool for Repairing Broken Unit Tests

Brett Daniel*
Damion Mitchell*

Danny Dig* Tihomir Gvero® Vilas Jagannath!
Jurand Nogiec!

Johnston Jiaa'

Shin Hwei Tan* Darko Marinov*

"University of lllinois at Urbana-Champaign, USA
2Ecole Polytechnique Fédérale de Lausanne, Switzerland
{bdaniel3,dig,vbangal2,jiaal,mitche34,jnogiec2,stan6,marinov}@illinois.edu
tihomir.gvero@epfl.ch

ABSTRACT

Successful software systems continuously change their re-
quirements and thus code. When this happens, some ex-
isting tests get broken because they no longer reflect the
intended behavior, and thus they need to be updated. Re-
pairing broken tests can be time-consuming and difficult.
We present REASSERT, a tool that can automatically sug-
gest repairs for broken unit tests. Examples include replac-
ing literal values in tests, changing assertion methods, or
replacing one assertion with several. Our experiments show
that REASSERT can repair many common test failures and
that its suggested repairs match developers’ expectations.

Categories and Subject Descriptors
D.2.5 [Software Engineering): Testing and Debugging

Keywords
Unit Testing, Testing Tools, Test Repair, ReAssert

1. INTRODUCTION

Successful software systems continue to evolve long af-
ter deployment, for example in response to requirements
changes, continuous hardware improvements, and better un-
derstanding of user needs. Changes incur high maintenance
costs not only for the system under test (SUT) but also for
the regression test suites which can often be larger than the
SUT itself [9]. When requirements change and the SUT
evolves, some existing tests break because they reflect the
old behavior, and not the new intended behavior.

Broken tests cause many problems. Updating broken tests
takes time. The fear of broken tests can even create a disin-
centive to write thorough test suites because they are more
likely to break. Developers may not take the time to in-
spect all failing tests to distinguish regression failures from
broken tests. They may instead choose to ignore or delete
some failing tests from the test suite, thereby reducing its

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE *11, May 21-28, 2011, Waikiki, Honolulu, HI, USA

Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

effectiveness. While these practices are undesirable, anec-
dotal evidence suggests that they are common (as discussed
elsewhere [4]). Similarly, if regression tests are generated
automatically using a test generation tool [2,8], developers
often find it easier to re-generate tests than address all the
failures, reducing the benefit of using the tool.

Rather than removing or ignoring tests, it is much more
desirable to repair broken tests. To do so, developers must
update the test code (and perhaps the SUT) such that the
tests pass. However, repairing tests is tedious and time-
consuming, especially when a large number of tests fail.

This paper presents our tool, REASSERT [3,4], that sug-
gests repairs for failing unit tests while retaining their power
to detect regressions. When tests (manually written or au-
tomatically generated) fail, REASSERT can suggest changes
to test code that cause the tests to pass. If the suggested re-
pairs match the developer’s intentions, then REASSERT can
repair the tests with the push of a button rather than a
tedious editing process.

The key challenge in repairing tests is to retain as much of
the original test logic as possible. One could trivially “repair”
a failing test by removing all of its code so that it passes but
reveals nothing about the correct (or incorrect) behavior of
the SUT. Our design requirements for REASSERT include
the following criteria:

e Make minimal changes: Retain as much of the test
code as possible and leave application code unchanged.

e Only change if needed: If no changes cause a test to
pass, then leave the test code unchanged. REASSERT
may not repair all failures, but those it does will pass.

e Require developer approval: Allow a developer to
inspect, modify, and approve the suggested repairs.

e Produce understandable test code: Produce code
that a developer can understand and could write man-
ually; use normal method calls and assertions similar
to any other unit test.

REASSERT is available as an Eclipse plugin or a standalone
Java library and command-line tool. Both can repair unit
tests written using JUnit version 3.* or 4.*. Our initial re-
lease of REASSERT was in 2009. We have recently added
two extensions. First, we integrated REASSERT with In-
finitest [5], an Eclipse plugin for continuous testing [7]. Sec-
ond, we added the capability to repair assertThat kind of as-
sertions, provided since JUnit version 4.4. REASSERT code,
related experimental data and demonstration video are pub-
licly available from http://mir.cs.illinois.edu/reassert.

2. ORIGINAL REASSERT TOOL

We now describe how a developer can use REASSERT to
repair tests using our Eclipse plugin. REASSERT adds a
“Repair with REASSERT” option to Eclipse’s JUnit runner.
When one or more tests fail during a test run, the devel-
oper can choose this option to get repair suggestions for the
failing tests. This brings up a compare dialog which shows
the original test (on the left), and the repaired test (on the
right). The developer can inspect the repairs and further
modify them if necessary. Pressing the “Confirm” button
applies the repairs to the test code. The developer can fix
one test at a time, or can fix all the failing tests at once.

If there is more than one assertion that needs repair in
one test case, REASSERT suggests repairs for all assertions
at once, although the first failure would normally “hide” the
subsequent failures. This increases productivity, because the
developer would otherwise have to revisit the subsequent
failures in the same test.

We next describe how REASSERT repairs a single failure in
a test. REASSERT follows a five-step process. It first instru-
ments the test classes to record values of method arguments
for failing assertions. It then re-runs the test and catches
the failure exception (which contains the stack trace) and
records the actual values that might make the test pass. It
next traverses the stack trace to find the code to repair. It
then examines the structure of the code and the recorded
values to choose a repair strategy to apply to change the
code. It finally recompiles the changed code.

If the test has more than one failure, REASSERT iteratively
repeats these steps until the test passes, no strategies apply,
or the iteration limit is reached.

2.1 Repair Strategies

Internally, REASSERT uses one of its repair strategies. It
provides several general strategies and is extensible so that
developers can add new strategies tailored to a particular
project or test suite. Each strategy requires analysis of the
dynamic execution of the test and the static code structure.
We summarize the seven original REASSERT strategies [4].

Replace Assertion Method: This strategy replaces a failing
assertion with a similar assertion that passes or that can be
repaired by another strategy. For example, if the argument
to assertTrue is a call to equals, then the strategy creates
an assertEquals invocation, which other strategies can repair
when the test is re-executed. This strategy often serves as
a “preprocessing step” for other strategies.

Invert Relational Operator: This strategy inverts a rela-
tional operator in the argument to an assertTrue or assert-
False assertion. This approach works particularly well for
assertions against objects that implement the java.lang.-
Comparable API.

Replace Literal in Assertion: This strategy replaces the ex-
pected (left) side of an assertEquals assertion with the literal
value computed by the actual (right) side. It is applicable
to primitive types and certain reference types such as String
and Class that can be written directly into code.

Replace with Related Method: This strategy applies when
the argument to assertTrue or assertFalse is a call to a com-
mon library method that is closely related to another. There

are many examples of such related methods in common
APIs, including java.util.Date’s after and before, String’s
contains and index0f, and java.util.Collection’s isEmpty
and size. In each case, the assertion fails on a boolean acces-
sor (e.g., isEmpty) and can be repaired by asserting against
the value returned from the related method.

In the following example, a call to isEmpty on a non-empty
collection object causes the assertTrue to fail.

assertTrue (collection .isEmpty());

Rather than trivially changing assertTrue to assertFalse,
this strategy asserts against the actual size of the nonempty
collection:

assertEquals (5, collection.size ());

Trace Declaration-Use Path: It is common for developers
to write helper methods that bundle several assertions for
reuse across many tests. To repair such helper methods,
REASSERT traces an argument used in a failing assertion
back to its definition (following dynamic call chain and static
declaration-use paths) and replaces the value there.

Accessor Expansion: The previous strategies mostly operate
on primitive values; this strategy differs in that it repairs
failures related to object inequality. It replaces a failing
assertEquals whose arguments are reference types with a list
of assertions that test values returned from both arguments’
accessor methods.

Surround with Try-Catch: Occasionally developers change
code to throw an exception rather than return an error value
or silently fail. In these cases, the exception is expected, and
a test should verify that it was thrown. This repair strategy
surrounds a failing method call with a try-catch block that
asserts that a particular exception is caught.

Custom Repair Strategies: REASSERT provides an extension
API which can be used to instrument arbitrary methods and
to define custom repair strategies. This capability allows
one to repair application-specific failures or tests written in
a custom test framework. An extension needs to provide a
class that implements the repair strategy interface and give
REASSERT the names of methods to instrument.

While the strategies implemented in REASSERT handle
many common test repair scenarios, there are other scenar-
ios [10] which are not handled by these strategies. However,
there is ongoing research on this topic developing techniques
for repairing other scenarios [6].

2.2 Empirical Evaluation

To evaluate REASSERT’s effectiveness, we addressed the
following research questions:

Q1 How many failures can REASSERT repair?
Q2 Are REASSERT’s suggested repairs useful?
Q3 Does REASSERT reveal or hide regressions?

We evaluated effectiveness in three ways. First, we con-
ducted two case studies in which other researchers used RE-
ASSERT to repair failures in their evolving software. The
results show that REASSERT was able to suggest repairs for
100% of 37 failing tests, of which 78% were accepted by
developers and 22% exposed regressions.

Second, we performed a controlled experiment with 18
participants to quantitatively answer all three questions.
REASSERT could repair 98% (131 of 135) of failures caused
by the participants’ code changes, the participants accepted
86% of the suggestions, and REASSERT hid 9% of regres-
sions. The participants also answered a survey. The major-
ity of the participants found REASSERT useful for the user
study tasks and thought that REASSERT would also be use-
ful for their own development and testing tasks. Most would
recommend REASSERT to other people and thought that it
should be included as part of the Eclipse IDE.

Third, we assessed REASSERT’s ability to suggest repairs
for failures in six open-source projects, considering both
manually written and automatically generated test suites.
REASSERT was able to repair 45% (76 of 170) of failures.

Our follow-up work [3] showed that using symbolic exe-
cution [8] could repair even more failures. Recreating a set
of experiments on Java applications and adding new exper-
iments on .NET applications, we found that REASSERT and
ideal literal replacement could together repair 66% (155 of
235) of failures, with literal replacement repairing 19% (44
of 235) that REASSERT could not. We also found that the
Pex symbolic-execution tool [8] could solve between 53% and
92% of the cases that ideal literal replacement could solve.

3. NEW EXTENSIONS

We recently extended REASSERT with new repair strate-
gies to handle tests that contain the assertThat assertions.
We also integrated REASSERT with a continuous testing tool.

3.1 Handling assertThat

JUnit version 4.4 introduced assertThat assertions with
the following syntax:

assertThat ([value], [matcher statement]);

The second parameter of an assertThat statement is a
Matcher, which allows one to define “match” rules declara-
tively, e.g., using the Hamcrest library [1]. This allows one
to create a large combinatorial set of assertions within calls
to assertThat, for example:

assertThat (aString, either(containsString(”red”)).
or(containsString ("blue”)));

Analyzing 27 randomly selected open-source projects that
use assertThat, we found 614 uses of matchers. The most
popular matchers were: is (376 uses), equalTo (141 uses),
nullValue (49 uses), and not (24 uses). We added a new set
of repair strategies to REASSERT to support assertThat and
commonly used matchers.

AssertThat Repair: These strategies trigger when the failing
assertion is written using assertThat. The strategies invoke
some of REASSERT’s other strategies (e.g., Replace Literal
in Assertion or Trace Declaration-Use Path) and can also
negate the predicate written in the matcher.

3.2 Continuous Testing Integration

Continuous testing [7] is a technique that improves de-
veloper productivity and testing efficiency by providing im-
mediate testing feedback to developers as they make code
changes. This is achieved by (1) continuously monitoring
the changes made by a developer, (2) executing in the back-
ground unit tests relevant to the changes, and (3) notifying

the developers about any failures due to the changes. The
technique is similar in spirit to the continuous notification
of compilation errors in most modern IDEs and spelling er-
rors in text editors. In recent years, popular IDEs, includ-
ing Eclipse, have suggested fixes for compilation errors. In
Eclipse, these fixes are called quick fixes and allow develop-
ers to easily fix many common errors like invalid class name,
missing method declaration, invalid package name, etc. Sim-
ilarly, REASSERT could naturally be used to improve contin-
uous testing by suggesting repairs for failing tests.

We integrated REASSERT with Infinitest [5], a continuous-
testing tool for Eclipse. While using the REASSERT integra-
tion, developers are provided suggestions for how the failing
tests can be fixed. Note that the suggestions are not dis-
played automatically, which would be very disruptive to the
developers workflow. Rather, as for quick fixes, the devel-
oper has to select a failing test and request the suggestions
for fixing that test (or all failing tests).

Acknowledgments

The first author passed away less than a week before the sub-
mission deadline. Brett will be missed dearly by his family,
friends, and colleagues.

We would like to thank Rob Bocchino, Milos Gligoric,
Bobak Hadidi, Munawar Hafiz, Viktor Kuncak, Steven Lau-
terburg, Yun Young Lee, Samira Tasharofi, Nikolai Till-
mann, and Mohsen Vakilian for help and valuable discus-
sions about this work. We would also like to thank anony-
mous colleagues who provided code evolutions and partici-
pated in our user study. This material is based upon work
partially supported by the US National Science Foundation
under Grant No. CCF-0746856.

4. REFERENCES

[1] Hamcrest — Library of matchers for test expressions.
http:/http://code.google.com/p/hamcrest/.

[2] M. Boshernitsan, R. Doong, and A. Savoia. From
Daikon to Agitator: Lessons and challenges in
building a commercial tool for developer testing. In
ISSTA, 2006.

[3] B. Daniel, T. Gvero, and D. Marinov. On test repair
using symbolic execution. In ISSTA, 2010.

[4] B. Daniel, V. Jagannath, D. Dig, and D. Marinov.
ReAssert: Suggesting repairs for broken unit tests. In
ASE, 2009. http://mir.cs.illinois.edu/reassert/.

[5] Improving Works. Infinitest.
http://improvingworks.com/products/infinitest/.

[6] M. Mirzaaghaei, F. Pastore, and M. Pezze.
Automatically repairing test cases for evolving method
declarations. In ICSM, 2010.

[7] D. Saff and M. D. Ernst. An experimental evaluation
of continuous testing during development. In ISSTA,
2004.

[8] N. Tillmann and J. de Halleux. Pex—white box test
generation for .NET. In Tests and Proofs. 2008.
http://research.microsoft.com/projects/Pex/.

[9] N. Tillmann and W. Schulte. Unit tests reloaded:
Parameterized unit testing with symbolic execution.
Tech report, Microsoft Research, 2005.

[10] A. Zaidman, B. V. Rompaey, S. Demeyer, and A. van
Deursen. Mining software repositories to study
co-evolution of production & test code. In ICST, 2008.

